Ferroelectric domain structures in SrBi2Nb2O9 epitaxial thin films: Electron microscopy and phase-field simulations
نویسندگان
چکیده
Ferroelectric domain structures of (001)SrBi2Nb2O9 epitaxial films, investigated using both transmission electron microscopy and phase-field simulations, are reported. Experiment and numerical simulation both reveal that the domain structures consist of irregularly shaped domains with curved domain walls. It is shown that the elastic contribution to domain structures can be neglected in SrBi2Nb2O9 due to its small ferroelastic distortion, less than 0.0018%. Two-beam dark-field imaging using reflections unique to domains of each of the two 90° polarization axes reveal the domain structure. Phase-field simulation is based on the elastic and electrostatic solutions obtained for thin films under different mechanical and electric boundary conditions. The effects of ferroelastic distortion and dielectric constant on ferroelectric domains are systematically analyzed. It is demonstrated that electrostatic interactions which favor straight domain walls are not sufficient to overcome the domain wall energy which favors curved domains in SrBi2Nb2O9 . © 2004 American Institute of Physics. @DOI: 10.1063/1.1707211#
منابع مشابه
Ferroelectric domain structures of epitaxial „001... BiFeO3 thin films
Ferroelectric domain structures of epitaxial BiFeO3 thin films on miscut 001 SrTiO3 substrates have been studied by transmission electron microscopy. BiFeO3 on 0.8° miscut substrates are composed of both 109° and 71° domains; in contrast, only 71° stripe domains are observed in BiFeO3 on 4° miscut 001 SrTiO3 substrates. The domain width in BiFeO3 on 4° miscut substrates increases as film thickn...
متن کاملEpitaxial strain stabilization of a ferroelectric phase in PbZrO3 thin films
PbZrO3/SrRuO3/SrTiO3 (100) epitaxial heterostructures with different thickness of the PbZrO3 (PZO) layer (dPZO ∼ 5–160 nm) were fabricated by pulsed laser deposition. The ultrathin PZO films (dPZO 10 nm) were found to possess a rhombohedral structure. On increasing the PZO film thickness, a bulk like orthorhombic phase started forming in the film with dPZO ∼ 22 nm and became abundant in the thi...
متن کاملControlled creation and displacement of charged domain walls in ferroelectric thin films
Charged domain walls in ferroelectric materials are of high interest due to their potential use in nanoelectronic devices. While previous approaches have utilized complex scanning probe techniques or frustrative poling here we show the creation of charged domain walls in ferroelectric thin films during simple polarization switching using either a conductive probe tip or patterned top electrodes...
متن کاملOrientation Dependence of the Piezoelectric Properties of Epitaxial Ferroelectric Thin Films
Title of Document: ORIENTATION DEPENDENCE OF THE PIEZOELECTRIC PROPERTIES OF EPITAXIAL FERROELECTRIC THIN FILMS Jun Ouyang, Doctor of Philosophy, 2005 Directed By: Professor Alexander. L. Roytburd Dept. of Materials Science and Engineering There are both intrinsic piezoelectric response and extrinsic piezoelectric response in ferroelectric materials. The intrinsic piezoelectric response is due ...
متن کاملGiant flexoelectric effect in ferroelectric epitaxial thin films.
We report on nanoscale strain gradients in ferroelectric HoMnO(3) epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane x-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders of magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, an...
متن کامل